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Summary 
Constant-speed human running is not exactly periodic. 
For instance, the body states of the person at mid-flight 
fluctuate about a mean value. In the absence of control, 
these noise-like fluctuations would cause people to fall 
down. Here, we mine the variability in human running 
data to find out how people control their leg forces, 
foot placement, stance duration and leg length to run 
without falling down. We then implement the derived 
controller on a simple point mass telescoping leg 
model and show that it can withstand a large range of 
perturbations. The simple model discovers some 
control behaviors that have been found in past running 
perturbations experiments. In the past, Maus et al. 
(2015) attempted to explain steady-state running 
stability with variants of a spring-mass model. Here, 
we show that spring-mass assumptions are not needed 
to explain human running stability to steady-state 
perturbations.  

Methods 
Subjects (N = 8, 5 male, 3 female) ran on a treadmill 
at 2.5. 2.7 and 2.9 m/s while motion of the hip, motion 
of the foot and ground reaction forces were collected 
for a few minutes. Using linear least squares methods 
similar to those used in Yang et al. (2014), we derived 
a linear model by mining the variability in the data. 
Using this linear model, we find out if the deviations 
in control variables like leg force, foot placement, 
stance duration and leg length during stance are 
explained by the deviations in the body states at mid-
flight. The inputs to the controller and coordinate 
notation are shown in Figure 1. We implement this 
derived controller on a simple point mass telescoping 
leg model by finding the model gains that best match 
the step-to-step map in the data. We apply these gains 
to the simple model during stance to control for any 
perturbations added during flight. We perturb the 
sideways velocity, fore-aft velocity and vertical 
position of the model at flight apex, one and two at a 
time. We obtain the basin of attraction for the model 
by using a 200 x 200 grid of perturbations and letting 
the model simulate for 20 steps at each grid point. A 
fall is defined as when the model’s body goes below 
the ground. 

 

 

Figure 1. A linear map from flight states to stance 
controls is inferred. 

Experiment Results: 
The linear model obtained from experimental data 
found that a sideways velocity perturbation at flight 
apex is, on average, completely corrected by the 
sideways impulse during the next step (R2=0.55). 
Around 80% of fore-aft velocity deviation at flight 
apex is corrected by the fore-aft impulse during the 
next step (R2=0.35). Impulses can be modulated by 
modulating leg forces and stance duration. However, 
we find that stance duration does not play a role in 
correcting velocity deviations. Stance duration 
decreases in response to an upward vertical 
perturbation and increases in response to a downward 
vertical perturbation at flight apex. The ground 
reaction force modulation depends on stance phase 
and the gains from experiment are shown in Figure 2. 
We find that, in response to fore-aft velocity 
deviations, the negative part of the GRF is modulated 
more than the positive part. We find that people place 
their foot in the direction of the velocity perturbation. 
This foot placement control is more exaggerated in the 
sideways than in the fore-aft direction. Finally, we find 
that the landing leg length is changed proportionally in 
response to a vertical perturbation at flight apex. All 
gains were independent of running speed and station-
keeping was not found to be a priority for the 
controller inferred. The step-to-step map, stride map 
and the eigenvalues of the states corroborate the gains 



 
 

from the linear model. All experimentally obtained 
gains are statistically significant with p<10-4. 

Model Results: 
The simple point mass telescoping leg model was first 
simulated with experimentally obtained control gains 
and some perturbations were applied. These gains 
were then adjusted to make sure that the step-to-step 
map for the model matched that from experiment. The 
adjusted model gains were found to be similar to 
experimental gains and are shown in Figure 2 below.  

  

 Figure 2: Experimental and model gains for GRF 
control. The model gains are similar to experimentally 
obtained gains. 

With the controller turned on, the model has an 
asymptotically stable running motion. It recovers from 
fore-aft and sideways velocity perturbation and also 
from vertical position perturbations, as shown in 
figure 3. Although not explicit in the model’s 
controller, the model discovers a steeper leg angle in 
response to an upward perturbation at flight apex.  

 

Figure 3: The model is stable to perturbations in fore-
aft and sideways velocities and vertical position. 

The model’s basin of attraction (Figure 4) shows us 
that it can recover from perturbations almost four  

times larger than the variablity from which it was 
derived. We find that the basin of attraction is wider 
for fore-aft than for sideways perturbations. We also 
find that the model is more robust to upward than to 
downward vertical perturbations. 

 

Figure 4: Basin of attractions for the simple model. 

Discussion 
The control strategies found here are obtained from 
actual human running data and provide an empirical 
basis for the more abstract running controllers 
currently in use. The foot placement control found 
here appears to be qualitative similar to that used by 
people when walking as found in Yang et al. (2014). 
Our simple model discovers a steeper leg angle in 
response to an upward perturbation and this has 
previously been reported in papers with step-up and 
step-down perturbations for running birds and 
humans. An energy-conservative spring cannot 
explain the control gains observed here. Thus, we find 
that spring-mass assumptions for running control are 
insufficient to explain human running stability for 
even small steady-state perturbations such as those in 
our experiments. The methods used here to study 
running stability do not need any contraptions to apply 
external perturbations. Thus, they can be easily 
reproduced and used to study differences in control 
strategies among different populations. Since our 
controller is primarily derived from human running 
data, it can be used to make exoskeletons and 
prosthetic legs respond to the users in a more natural 
and seamless manner. 
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